2021 # West Bank & Vicinity GRR Appendix B – Geotechnical Engineering U.S. Army Corps of Engineers, New Orleans District Non-Federal Sponsor: Coastal Protection and Restoration Authority Board of Louisiana March 2021 #### THIS PAGE IS INTENTIONALLY BLANK ### WEST BANK & VICINITY GRR APPENDIX B – GEOTECHNICAL ENGINEERING #### **TABLE OF CONTENTS** | 1 | Intro | duction | 3 | |---|--------|--|---| | | 1.1 | Overview | 3 | | | 1.2 | Scope | 3 | | | 1.2.1 | Study Area | | | | 1.3 | Geotechnical Terminology | 3 | | 2 | Futu | e With Project/Action Condition | 3 | | | 2.1 | Prior Analysis | 3 | | | 2.2 | 1% AEP Lift Schedule analysis | | | | 2.3 | 0.5% AEP Lift Schedule analysis | 6 | | | 2.4 | LEVEE STABILITY Analysis | 6 | | | 2.5 | Assumptions and Risk | 8 | | 3 | Leve | e Composition | 8 | | 4 | Settle | ement Monitoring / Construction Implementation | 8 | | 5 | Cond | elusion | 8 | #### **LIST OF FIGURES** WBV Table of Representative Levee, Latest Lift, Armor, and Prior Analysis **HSDRRS** Map Map of Survey Reaches WBV Survey Reach 1 – WBV 71 (Western Tie-In (North-South)) WBV Survey Reach 2 – WBV 15a.2 (Lake Cataouatche PS#1 to Segnette State Park) WBV Survey Reach 3 – WBV 14c.2 (New Westwego PS to Orleans Village) WBV Survey Reach 4 – WBV 14b.2 (Orleans Village to Hwy 45) WBV Survey Reach 5 – WBV 14a.2 (Harvey Canal Westbank Levee) WBV Survey Reach 6 – WBV 06a.2 (Belle Chasse Hwy to Hero Cutoff (West)) WBV Survey Reach 7 - WBV 47.1 (Algiers Lock to Belle Chasse Hwy (West)) WBV Survey Reach 8 - WBV 48.2 (Belle Chasse to Algiers Lock (East)) WBV Survey Reach 9 – WBV 48.2 (Belle Chasse to Algiers Lock (East)) WBV Survey Reach 10 – WBV 12 (Hero Canal Reach 1) WBV Survey Reach 11 – WBV 1.2b (Augusta to Oakville) WBV Survey Reach 12 – WBV 6.1 (Parish Line to English Turn Bend) WBV Survey Reach 13 – WBV 7.1 (West Crossover Point to Parish Line) WBV Survey Reach 13 – WBV 9 (Algiers Lock Forebay to West Crossover Point to Parish Line) WBV Survey Reach 13 – WBV 11 (GNO Bridge to Algiers Lock) WBV-MRL-9 Analysis WBV-MRL-10 Analysis WPV-MRL-11 Analysis ### WEST BANK & VICINITY GRR APPENDIX B - GEOTECHNICAL #### 1 INTRODUCTION #### 1.1 OVERVIEW The appendix documents geotechnical analyses for levee lifts for future conditions of 2073 intermediate project grades. #### 1.2 SCOPE The scope of this appendix is to project lift schedules to the year 2073, based on the previously developed lift schedules to the year 2057, and to perform stability analysis for Mississippi River Levee (MRL)-WBV-9, 10 and 11. Settlement-induced bending moment (SIBM) caused by levee lifts on adjacent T-wall transition, and additional stability measures from the lifts were not included in the analyses. 100-year analysis only looked at RSLR, not settlement. #### 1.2.1 STUDY AREA The study area is West Bank and Vicinity, which borders the Mississippi River to the west, north and east, and Lake Salvador to the south. #### 1.3 GEOTECHNICAL TERMINOLOGY Consolidation: settlement of soil as a result of dissipation of pore water pressure over time. Shear strength: the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it. Stability berm: an earthen structure built laterally and adjacent to a levee slope to help keep it stable from sliding. #### 2 FUTURE WITH PROJECT/ACTION CONDITION #### 2.1 PRIOR ANALYSIS "Previously developed lift schedules" or "prior lift schedules" were last prepared in 2014 to estimate levee lifts needed to ensure that previously established design grades were maintained from settlement over time. Consolidation settlement of the foundation was caused by the volume change in saturated cohesive soils due to expulsion of the water that occupies the void spaces. The volume change was induced by the levee load that compresses the soil layers. The process of developing prior lift schedules involved creating consolidation parameters from subsurface exploration and testing, estimating stress increase from levee load, and using Settle3D computer program. Shrinkage and consolidation of levee fill were also considered in the development of lift schedules. Due to the non-uniform nature of soil's physical structure and substance, settlement was estimated and lift schedules were developed for planning purposes only. #### 2.2 1% AEP LIFT SCHEDULE ANALYSIS Survey of levee elevations was performed in November and December 2018. Survey was performed in fourteen survey reaches which consist of different levees. Settlement was estimated and lift schedules developed for the levees with prior analyses. First, lift schedules previously developed to 2057 for levees of each survey reach were compared to each other and the levee with representative settlement curves was selected. It should be noted that in some cases lift schedules for all levees of a certain survey reach were not previously developed. Secondly, previously constructed lift was drawn with year and elevation, on the prior lift schedule. Thirdly, the November or December 2018 average survey values of the control levee were plotted. Since survey elevation included the 6-inch thick articulated concrete block if the levee was armored, the survey was lowered 6 inches for the actual levee crown. A settlement curve was then drawn from the actual lift elevation to the survey elevation. If this settlement curve intersected the new design grade, another levee lift was drawn. The thickness of the lift was similar to the thickness of the prior schedule, or was modified to reduce the number of lifts to save costs. Subsequent lifts were developed as similar shaped curves. Survey reach 1 consisted of WBV-17b.2, WBV-18.2, WBV-71 and WBV-72. Levee WBV-71 was selected as the representative levee. Prior lift schedules consisting of the design grade from 2007 to 2057 and five lifts were shown as dashed lines. The five lifts were in 2011, 2013, 2017, 2023 and 2045. Design grade from 2007 to intermediate project grade or 100-year new in 2073 was drawn in red. Previously constructed lift (+11.5 in 2013) and 2018 high, average and low surveys were also drawn. Settlement curve in red was then drawn from lift elevation to survey elevation. A lift also in red was developed when the settlement curve intersected the design grade. The maximum lift thickness followed those of the prior lifts. One lift was required in 2039 to elevation +12, and another in 2052 to +12.5. Due to the pandemic telework condition, it was not possible to remove the bold grey solid lines from prior work. Survey reach 2 consisting of the levee WBV-15a.2 was analyzed similarly to survey reach 1. For levee WBV-14c.2 in survey reach 3, settlement curve from 2011 lift to 2018 average survey was determined and it was close to prior lift schedule. There was no armoring so the average survey was used. Prior schedules showed the design grades in green, survey elevations in blue, and projected crown elevations in light red. Since prior lift schedules existed in pdf format only, it was not possible to edit information on plate for clarity. New design grades, actual settlement and future lifts were shown in red. The actual lift in 2019 was plotted and settlement curve estimated, following the shape of the curve from 2011 lift to 2018 survey. Due to the pandemic work condition, old work in solid grey line (100-year old) could not be removed for clarity. WBV-14b.2 in survey reach 4 was analyzed similarly to survey reach 3. WBV-14a.2 in survey reach 5 is an interior levee with no direct storm surge effect from the Gulf of Mexico. Prior lift schedules showed the design grade in green at +8.5, survey elevations in blue, and projected crown elevations in light red. Actual settlement in gray was drawn from 2012 lift to 2018 average survey and it was close the prior curve. A lift was required in 2019 and the settlement curve in gray was estimated similar to that of the prior schedule. WBV-06a.2 in survey reach 6 is an interior levee with a design grade at +8.5. Prior analysis was in bold blue. Since prior lift schedules existed in pdf format only, it was not possible to edit information on plate for clarity. Since the settlement curve from construction grade to 2018 average survey stayed above the design grade, no future lifts were required. WBV-47.1 in survey reach 7 is an interior levee with a design grade at +8.2. Prior analysis was in dotted gray and settlement curve in solid gray. Since the settlement curve from previously constructed lift to 2018 average survey stayed above the design grade, no future lifts were required. WBV-48.2 in survey reaches 8 and 9 is an interior levee with a design grade at +8.5. Prior lifts were in bold blue and settlement curve in light gray. Since the settlement curve from previous lift to 2018 average survey stayed above the design grade, no future lifts were required. Prior schedule of WBV-12 in survey reach 10 consisted of four lifts in dashed gray lines. Since latest lift was constructed in 2018, same as survey, settlement curve in solid yellow was assumed to follow curve in prior schedule. It was not possible to remove the solid red and grey line and curves from old work (100-year old) for clarity. Prior schedules of WBV-MRL-1.2b in survey reach 11 consisted of theoretical settlement and lifts in dashed blue, and actual settlement and projected lifts in yellow. There seemed to be a good correlation between the two. It was not possible to remove the red project grade and grey settlement curve from old work (100-year old). Projected settlement of WBV-MRL-6.1 in survey reach 12 showed a lift of approximately 1.5 foot in 2040. There seemed to be a good correlation between settlement in prior analysis and actual settlement from the latest lift. It was not possible to remove the red project grade and solid grey settlement curve from old work (100-year old). Projected settlement of WBV-MRL-7.1 in survey reach 13 showed no
required lift. There seemed to be a good correlation between settlement in prior analysis and actual settlement from the latest lift. It was not possible to remove the red project grade and solid grey settlement curve from old work (100-year old). Projected settlement of WBV-MRL-9 and WBV-MRL-11 in survey reach 13 showed a lift in 2040 and 2060, respectively. Summary of lift schedules is shown in Appendix A Civil. #### 2.3 0.5% AEP LIFT SCHEDULE ANALYSIS 0.5% AEP settlement was interpolated between 0.2% AEP and 1% AEP settlement and presented in Appendix A. Considering the level of effort of the study, general reevaluation, interpolation was appropriate. #### 2.4 LEVEE STABILITY ANALYSIS Stability was analyzed for raising the WPV-MRL-9, 10 and 11 to the 2073 design grades while shifting the centerline to the flood side to avoid additional right-of-way need on the protected side. Boring data was collected and strengthlines created. Surveys were conducted in 2020 and representative cross sections selected. GeoStudio Slope/W version 2019 with Spencer's method of analysis was used, and HSDRRS criteria for minimum factors of safety apply. Since Still Water Level (SWL) and Low Water Level (LWL) were not available, Water at Project Grade (WPG) or High Water Level (HWL) was used. #### **HSDRRS Slope Stability Design Factors of Safety** | Analysis Condition | Required
Minimum Factor
of Safety | | | | |---|---|-------------------------------------|--|--| | | Spencer
Method ¹ | Method
of
Planes ² | | | | End of Construction ³ | 1.3 | 1.3 | | | | Design Hurricane ⁴ (SWL) | 1.5 | 1.3 | | | | Design Hurricane (SWL) w/ dry PS borrow pit10 | 1.3 | 1.3 | | | | Water at Project Grade (levees) ⁵ | 1.4
(1.5) ⁶ | 1.2 | | | | Water at Construction Grade (levees) ⁵ | 1.2 | N/A | | | | Extreme Hurricane (water @ top of I-walls) ⁵ | 1.4
(1.5) ⁶ | 1.3 | | | | Extreme Hurricane (water @ top of T-walls)5a | 1.4
(1.5) ⁶ | 1.2 | | | | Low Water (hurricane condition) ⁷ | 1.4 | 1.3 | | | | Low Water (non-hurricane condition) ⁸ S-case | 1.4 | 1.3 | | | | Water at Project Grade Utility Crossing ⁹ | 1.5 (1.4) | 1.3 (1.2) | | | Centerline borings for WBV-MRL-9 consisted of WB-85.3-U, WB-84.5CU, R-85.75-RUC, R-84.5-RUC and W-87.4-U drilled in 1971 to 2010 with depths of 130 feet to 150 feet. Toe borings consisted of WB-84.75UPT, WB-84.2UPT, R-85.75-RUT, R-84.5-RUT and R-86.8-UR drilled in 1968 to 2010 with depths of 130 feet to 150 feet. Centerline borings for WBV-MRL-10 consisted of R-88.2-AU drilled in 1973 with depth of 130 feet. Toe borings consisted of ACT-2UT, R-88.2-AUT, 5-UL, 4-UL, 1-U and U-1 drilled in 1947 to 2002 with depths of 60 feet to 100 feet. Centerline borings for WBV-MRL-11 consisted of ASA-5UCL, ASA-2UCL, W-92.2-UC, W-94.8-U, W-94.5-U, W-93.9-U, R-90.25-RU, W-94.4-U, W-90.8-U, R-89.1-RUC, R-88.49-UR, and R-89.7-UR drilled in 1969 to 2007 with depth of 60 feet to 220 feet. Toe borings consisted of M-94.4-UR, M-94.2-UR, M-94.0-UR, W-95.1-UT, W-94.5-UT, W-93.9-UT, W-94.9-UT, W-94.7-UT, M-94.6-UL, R-89.7-URT and R-89.1-RUT drilled in 1969 to 2007 with depths of 90 feet to 230 feet. Since the minimum factors of safety were met, WBV-MRL-9 and WBV-11 were able to be raised and the alignment shifted to the flood side. WBV-MRL-10 raise did not meet the required factor of safety and a floodwall was recommended. #### 2.5 ASSUMPTIONS AND RISK The assumption was that settlement curves follow the same trends as those of the curves developed to 2057. In lieu of sufficient data (latest lift occurred after survey), settlement curve was assumed to follow prior lift schedule. To be conservative, the same assumption also applies to subsequent lift schedules following a first lift with a small amount of settlement. Risk should be reasonable. Stability aspect was performed for a few selected WBV-MRL levees and considered a reasonable risk. SIBM was not considered at this stage and risk should be reasonable. #### 3 LEVEE COMPOSITION A typical levee is constructed of high plasticity clay or low plasticity clay with less than 35% sand and 9% organic material. The clay is compacted to at least 90% maximum dry density at a moisture content of within +5% to -3% optimum moisture content. #### 4 SETTLEMENT MONITORING / CONSTRUCTION IMPLEMENTATION An initial construction grade is typically approximately 2-3 feet higher than the design grade at the start of the design life. The purpose for that is: to account for a settlement balance, allow for strength gain in the foundation due to consolidation, minimize the increase in required levee footprint, and maintain the constructed crown at or above the design life for approximately 5-7 years. When the time-rate settlement curve (i.e. placed at the construction grade elevation) is scheduled to cross the assumed linearly-varying design elevation line on the lift schedule/plot, another lift is required. If authority/funding is in place, MVN or the NFS will start looking into this approximately a year or so before the time-rate settlement curve theoretically crosses the design line so that surveys can be taken to verify the theoretical calculations. After the first lift, a balance is also aimed for construction lift height, foundation conditions, and lift duration. It is usually the intent to stay within the ROW limits for additional lifts. #### 5 CONCLUSION WBV levees can require a number of lifts to maintain the 1% of 2073 intermediate project grade. Lift schedules and estimated quantities are in Appendix A (Civil). Lift Schedule Projections ### LPV-WBV GRR Future Levee Lift Analysis Table of Representative Levee, Latest Lift, Armor, and Prior Analysis WBV | Survey
Reach | Levee | Representative Levee | Lift Year | Lift
Elevation | Armor
Year | Note | |-----------------|--|--|-----------|-------------------|---------------|---------------------------------------| | 1 | WBV-17b.2, 18.2, 71 and 72 | 71 Western tie-in (north-south) | 2013 | 11.5 | 2016 | | | 2 | WBV-15a.2 (Lake Cataouatche PS#1 to Segnette State Park) | | 2011 | 13.5 | | | | 3 | WBV-14c.2 (New Westwego PS to Orleans Village) | | 2011 | 13.5 | | | | 4 | WBV-14b.2, 14e.2a, 14f.2, 14i.2 | 14b.2 (Orleans Village to Hwy 45) | 2011 | 14 | | | | 5 | WBV-14a.2 (Harvey canal westbank levee) | | 2012 | 12 | | | | 6 | WBV-06a.2 (Belle Chasse Hwy to Hero cutoff (west)) | | exist | 10 | | | | 7 | WBV-47.1 (Algiers lock to Belle Chasse Hwy (west)) | | 2011 | 9.2 | | | | 8 | WBV-48.2, 49.1 | 48.2 (Belle Chasse to Algiers Lock (east)) | 2014 | 8.8 | | | | 9 | WBV-48.2 | 48.2 (Belle Chasse to Algiers Lock (east)) | 2014 | 8.8 | | | | 10 | WBV-09a, 12, 90 | 12 (Hero canal reach 1) | 2018 | 13 | | | | 11 | WBV-MRL 1.2b & 3.2 | 1.2b (Augusta to Oakville) | 2017 | 22.5 | 2018 | No prior lift schedules for 3.2 | | 12 | WBV-MRL 5.2 & 6.1 | 6.1 (Parish Line to English Turn Bend) | 2011 | 21 | Armored | No prior lift schedules for 5.2 | | 13 | WBV-MRL 7.1, 9, 10, 11 | 7.1 (West Crossover Point to Parish Line) | 2012 | 21 | 2017 | No prior lift schedules for 9, 10, 11 | ### Hurricane & Storm Damage Risk Reduction System (HSDRRS) Map ## Survey Reaches for WBV GRR Study #### WBV Survey Reach 1 WBV-71 Lift Schedules Intermediate Project Grade (100-yr new) WBV Survey Reach 2 WBV-15a.2 Lift Schedules Intermediate Project Grade (100-yr new) Year Note: Prior to 2010 Lift, Existing Centerline Approx. EL +1 from STA 260+00 TO 320+17 DESIGN GRADE ELEVATION (100 YR - 0.1 cfs/ft flow) SURVEYED ELEVATIONS PROJECTED CROWN ELEVATION #### Notes: - Levee STA 260+00 TO 355+45 will experience significantly more settlement than the levee portions resting on a natural ridge from STA. 355+45 to 425+00. - Time Rate Settlement Calculations are an Estimate and Should be Only be used for Planning Purposes #### WBV-14b.2 WEST JEFFERSON PARISH, LOUISIANA ORLEANS VILLAGE LEVEE REACH THEORETICAL SETTLEMENT ANALYSIS STA 260+00 TO 355+45 # Westbank and Vicinity HSDRRS Survey Reach 6 Algiers Canal, WBV 6A.2 Reach 4 - Lift Schedule (updated 10/7/14) Note: Time rate settlement calculations are only an estimate. Time rate settlement may vary from what is shown and is only develoed for planning purposes. ⁻The raise in 2014 was to EL+8.8 and P/S berm only was added in 2010. ⁻The reach presented is the reach that would theoretically require a maintenance lift the soonest. Other reaches may also require a lift but would require one at a later time than this lift schedule is indicating. Therefore, the lift schedule presented will conservatively apply to WBV-48.2, WBV-49.1, and WBV-49.2a projects. ## WBV Survey Reach 11 WBV-MRL-1.2b Lift Schedules Projections Intermediate Design Elevations (100-yr new) ## WBV Survey Reach 12 WBV-MRL-6.1 Lift Schedule Projections Intermediate Design Elevations (100-yr new) Previous Project grade Previous Projected Settlement of 1st Lift Previous Projected Settlement of 2nd Lift - Actual lift (2011 to +21) - Dec '18 survey (armor & stone accounted for) - Project Grade Intermediate (100-yr new) ## WBV Survey Reach 13 WBV-MRL-7.1 Lift Schedule Projections Intermediate Design Elevations (100-yr new) Previous Project grade Previous Projected Settlement of 1st Lift Previous Projected Settlement of 2nd Lift - Actual lift (2012 to +21), armored in 2017 - Dec '18 survey , armor & stone accounted for Project Grade Intermediate (100-yr new) ## WBV Survey Reach 13 WBV-MRL-9 Lift Schedule Projections Intermediate Design Elevations (100-yr new) ------ Previous Project grade - ---- Previous Projected Settlement of 1st Lift - Previous Projected Settlement of 2nd Lift - Actual lift (1994 to +23.6NGVD), no armor - Dec '18 survey, no armor Project Grade Intermediate (100-yr new) Levee Stability Analyses EE HWL Page 1 of 8 #### **EE HWL** Report generated using GeoStudio 2019.
Copyright © 1991-2018 GEOSLOPE International Ltd. #### **File Information** File Version: 10.00 Title: WBV-MRL-9 Created By: Quach, Bich N CIV USARMY CEMVN (USA) Last Edited By: Quach, Bich N CIV USARMY CEMVN (USA) Revision Number: 42 Date: 11/06/2020 Time: 12:42:57 PM Tool Version: 10.0.0.17401 File Name: WBV-MRL-9 FS shift.gsz Directory: G:\F&MHOME\QuachB\LPV-WBV GRR levee lifts\FLD LPV-WBV-MRL\WBV-MRL\WBV-MRL-9\ Last Solved Date: 11/13/2020 Last Solved Time: 01:14:00 PM #### **Project Settings** Unit System: U.S. Customary Units #### **Analysis Settings** #### **EE HWL** Kind: SLOPE/W Method: Spencer Settings PWP Conditions from: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: Yes **Optimizations Settings** Maximum Iterations: 2,000 Convergence Tolerance: 1e-07 Starting Points: 8 Ending Points: 16 Complete Passes per Insertion: 1 Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 ° Tension Crack Option: Tension Crack Line Filled with water (0 to 1): 0 Tension Crack Fluid Unit Weight: 62.430189 pcf Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 0.1 ft Number of Slices: 30 **Factor of Safety Convergence Settings** Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 **Solution Settings** Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2 **Materials** 2 Levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0 ° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 7 SP -80 TO -100 Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 30° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 3 CH TO 0 Model: Spatial Mohr-Coulomb Unit Weight: 115 pcf Cohesion Fn: CH TO 0 Phi': 0 ° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 4 CH 0 TO -30 Model: Spatial Mohr-Coulomb Unit Weight: 110 pcf Cohesion Fn: CH 0 TO -30 Phi': 0 ° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 EE HWL Page 3 of 8 #### 5 CH -30 TO -60 Model: Spatial Mohr-Coulomb Unit Weight: 105 pcf Cohesion Fn: CH -30 TO -60 Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 #### 6 CH -60 TO -80 Model: Spatial Mohr-Coulomb Unit Weight: 110 pcf Cohesion Fn: CH -60 TO -80 Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 #### 8 CH -100 TO -150 Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 1,500 psf Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 #### 1 New Levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 #### **Slip Surface Entry and Exit** Left Type: Range Left-Zone Left Coordinate: (-48.05153, 10) ft Left-Zone Right Coordinate: (-2, 22) ft Left-Zone Increment: 10 Right Type: Range Right-Zone Left Coordinate: (50.79211, 8.74789) ft Right-Zone Right Coordinate: (133, 4.26) ft Right-Zone Increment: 17 Radius Increments: 4 #### **Slip Surface Limits** Left Coordinate: (-200, 6.68) ft EE HWL Page 4 of 8 Right Coordinate: (200, 4.26) ft #### **Piezometric Lines** #### Piezometric Line 1 #### **Coordinates** | | Х | Υ | |--------------|----------|---------| | Coordinate 1 | -200 ft | 22 ft | | Coordinate 2 | -11.7 ft | 22 ft | | Coordinate 3 | 62.7 ft | 5.89 ft | | Coordinate 4 | 84.6 ft | 4.69 ft | | Coordinate 5 | 100.7 ft | 4.78 ft | | Coordinate 6 | 110.7 ft | 4.5 ft | | Coordinate 7 | 121.2 ft | 4.26 ft | | Coordinate 8 | 200 ft | 4.26 ft | #### **Tension Crack Line** | | Х | Υ | |--------------|----------|--------| | Coordinate 1 | -40 ft | 9.6 ft | | Coordinate 2 | -11.7 ft | 19 ft | | Coordinate 3 | -1.7 ft | 19 ft | #### **Cohesion Functions** #### CH TO 0 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 700 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 500) Data Point: (-54.2, 500) Data Point: (0, 700) Data Point: (62.7, 500) Data Point: (200, 500) #### CH 0 TO -30 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 600 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 400) EE HWL Page 5 of 8 Data Point: (-54.2, 400) Data Point: (0, 600) Data Point: (62.7, 400) Data Point: (200, 400) ### CH -30 TO -60 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 700 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 500) Data Point: (-54.2, 500) Data Point: (0, 700) Data Point: (62.7, 500) Data Point: (200, 500) ### CH -60 TO -80 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 1,000 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 700) Data Point: (-54.2, 700) Data Point: (0, 1,000) Data Point: (62.7, 700) Data Point: (200, 700) ## **Points** | | Х | Υ | |----------|-----------|----------| | Point 1 | -200 ft | 6.68 ft | | Point 2 | -119.4 ft | 6.68 ft | | Point 3 | -106.3 ft | 7.77 ft | | Point 4 | -67.5 ft | 7.16 ft | | Point 5 | -54.2 ft | 6.93 ft | | Point 6 | -50.8 ft | 7.17 ft | | Point 7 | -50.1 ft | 7.35 ft | | Point 8 | -34.7 ft | 12.07 ft | | Point 9 | -17.3 ft | 18.13 ft | | Point 10 | -17.1 ft | 18.23 ft | | Point 11 | -8.4 ft | 20.54 ft | | Point 12 | -5.5 ft | 20.75 ft | | Point 13 | -0.5 ft | 20.57 ft | | Point 14 | 3.6 ft | 20.48 ft | | Point 15 | 21.2 ft | 15.94 ft | | Point 16 | 41.2 ft | 11.05 ft | | | | | EE HWL Page 6 of 8 | 1 | | l = 00 c | |----------|----------|----------| | Point 17 | 62.7 ft | 5.89 ft | | Point 18 | 84.6 ft | 4.69 ft | | Point 19 | 100.7 ft | 4.78 ft | | Point 20 | 110.7 ft | 4.5 ft | | Point 21 | 121.2 ft | 4.26 ft | | Point 22 | 200 ft | 4.26 ft | | Point 23 | -200 ft | 0 ft | | Point 24 | 200 ft | 0 ft | | Point 25 | -200 ft | -30 ft | | Point 26 | 200 ft | -30 ft | | Point 27 | -200 ft | -60 ft | | Point 28 | 200 ft | -60 ft | | Point 29 | -200 ft | -80 ft | | Point 30 | 200 ft | -80 ft | | Point 31 | -200 ft | -100 ft | | Point 32 | 200 ft | -100 ft | | Point 33 | -200 ft | -150 ft | | Point 34 | 200 ft | -150 ft | | Point 35 | -11.7 ft | 22 ft | | Point 36 | -1.7 ft | 22 ft | | Point 37 | -57.2 ft | 6.98 ft | # **Regions** | | Material | Points | Area | |----------|-------------------|--------------------------------------|-------------------------| | Region 1 | 2 Levee | 5,6,7,8,9,10,11,12,13,14,15,16,17 | 884.11 ft ² | | Region 2 | 3 CH TO 0 | 1,23,24,22,21,20,19,18,17,5,37,4,3,2 | 2,385.9 ft ² | | Region 3 | 4 CH 0 TO -30 | 23,24,26,25 | 12,000 ft ² | | Region 4 | 5 CH -30 TO -60 | 25,26,28,27 | 12,000 ft ² | | Region 5 | 6 CH -60 TO -80 | 27,28,30,29 | 8,000 ft ² | | Region 6 | 7 SP -80 TO -100 | 29,30,32,31 | 8,000 ft ² | | Region 7 | 8 CH -100 TO -150 | 31,32,34,33 | 20,000 ft ² | | Region 8 | 1 New Levee | 37,5,6,7,8,9,10,11,12,14,36,35 | 109.92 ft ² | # **Slip Results** Slip Surfaces Analysed: 684 of 991 converged # **Current Slip Surface** Slip Surface: 991 Factor of Safety: 1.50 Volume: 3,913.661 ft³ Weight: 438,333.41 lbf Resisting Moment: 5,376,690.5 lbf·ft Activating Moment: 3,589,513.7 lbf·ft Resisting Force: 66,550.804 lbf EE HWL Page 7 of 8 Activating Force: 44,432.832 lbf Slip Rank: 1 of 991 slip surfaces Exit: (104.21495, 4.6815815) ft Entry: (-30.762101, 12.668419) ft Radius: 60.134601 ft Center: (39.649972, 38.287478) ft ## **Slip Slices** | | х | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base
Material | |-------------|----------------------|------------------|-------------------|--------------------------|------------------------|----------------------|---------------------|------------------| | Slice
1 | -29.17017
ft | 11.367764
ft | 663.77247
psf | 582.2477
psf | -0 psf | 600 psf | 0 psf | 2 Levee | | Slice
2 | -
25.727365
ft | 8.3636686
ft | 851.31874
psf | 927.74236
psf | 0 psf | 600 psf | 0 psf | 2 Levee | | Slice
3 | -21.11202
ft | 4.1159636
ft | 1,116.5038
psf | 1,459.8083
psf | 0 psf | 622.09587
psf | 0 psf | 3 CH TO
0 | | Slice
4 | -
17.823775
ft | 1.0224585
ft | 1,309.6319
psf | 1,785.1142
psf | 0 psf | 634.22961
psf | 0 psf | 3 CH TO
0 | | Slice
5 | -17.2 ft | 0.36835496
ft | 1,350.4677
psf | 1,865.4897
psf | 0 psf | 636.53137
psf | 0 psf | 3 CH TO
0 | | Slice
6 | -14.4 ft | -2.5677839
ft | 1,533.7714
psf | 2,276.6003
psf | 0 psf | 546.86347
psf | 0 psf | 4 CH 0
TO -30 | | Slice
7 | -10.84482
ft | -6.2958203
ft | 1,754.9529
psf | 2,703.2782
psf | 0 psf | 559.98221
psf | 0 psf | 4 CH 0
TO -30 | | Slice
8 | -9.19482
ft | -7.904707
ft | 1,833.0911
psf | 2,944.072
psf | 0 psf | 566.07077
psf | 0 psf | 4 CH 0
TO -30 | | Slice
9 | -
7.1100645
ft | -9.7725646
ft | 1,921.5198
psf | 3,136.2937
psf | 0 psf | 573.7636
psf | 0 psf | 4 CH 0
TO -30 | | Slice
10 | -
5.6600645
ft | -11.071707
ft | 1,983.0241
psf | 3,269.9888
psf | 0 psf | 579.11415
psf | 0 psf | 4 CH 0
TO -30 | | Slice
11 | -3.6 ft | -12.917442
ft | 2,070.4055
psf | 3,458.6122
psf | 0 psf | 586.71587
psf | 0 psf | 4 CH 0
TO -30 | | Slice
12 | -1.1 ft | -15.157342
ft | 2,176.4475
psf | 3,668.4695
psf | 0 psf | 595.94096
psf | 0 psf | 4 CH 0
TO -30 | | Slice
13 | 0.021715
ft | -16.162354
ft | 2,224.0271
psf | 3,736.6442
psf | 0 psf | 599.93073
psf | 0 psf | 4 CH 0
TO -30 | | Slice
14 | 2.071715
ft | -17.752133
ft | 2,295.565
psf | 3,937.0288
psf | 0 psf | 593.39166
psf | 0 psf | 4 CH
0
TO -30 | | Slice
15 | 4.4219 ft | -19.478063
ft | 2,371.545
psf | 4,052.483
psf | 0 psf | 585.89506
psf | 0 psf | 4 CH 0
TO -30 | | Slice
16 | 7.395835
ft | -21.199478
ft | 2,438.8112
psf | 4,279.5968
psf | 0 psf | 576.40882
psf | 0 psf | 4 CH 0
TO -30 | | Slice
17 | 11.699905
ft | -23.435135
ft | 2,520.2006
psf | 4,398.921
psf | 0 psf | 562.67973
psf | 0 psf | 4 CH 0
TO -30 | | Slice
18 | 16.003975
ft | -25.670792
ft | 2,601.59
psf | 4,518.2453
psf | 0 psf | 548.95064
psf | 0 psf | 4 CH 0
TO -30 | EE HWL Page 8 of 8 | Slice | 19.678005 | -27.257784 | 2,651.0002 | 4,709.5123 | 0 psf | 537.23124 | 0 psf | 4 CH 0 | |-------------|-----------------|------------------|-------------------|-------------------|-------|------------------|-------|------------------| | 19 | ft | ft | psf | psf | 0 051 | psf | 0 psi | TO -30 | | Slice
20 | 23.46499
ft | -28.425144
ft | 2,672.6856
psf | 4,730.8157
psf | 0 psf | 525.15155
psf | 0 psf | 4 CH 0
TO -30 | | Slice
21 | 28.64613
ft | -29.56149
ft | 2,673.5885
psf | 4,804.6973
psf | 0 psf | 508.62478
psf | 0 psf | 4 CH 0
TO -30 | | Slice
22 | 33.97171
ft | -29.996343
ft | 2,628.7445
psf | 4,791.3421
psf | 0 psf | 491.63729
psf | 0 psf | 4 CH 0
TO -30 | | Slice
23 | 38.79057
ft | -29.989749
ft | 2,563.1908
psf | 4,654.5684
psf | 0 psf | 476.26612
psf | 0 psf | 4 CH 0
TO -30 | | Slice
24 | 43.13533
ft | -29.983804
ft | 2,504.0865
psf | 4,532.2526
psf | 0 psf | 462.40724
psf | 0 psf | 4 CH 0
TO -30 | | Slice
25 | 47.00599
ft | -29.978508
ft | 2,451.4317
psf | 4,424.3949
psf | 0 psf | 450.06064
psf | 0 psf | 4 CH 0
TO -30 | | Slice
26 | 50.978197
ft | -29.537888
ft | 2,370.2268
psf | 4,376.5863
psf | 0 psf | 437.39012
psf | 0 psf | 4 CH 0
TO -30 | | Slice
27 | 55.051952
ft | -28.661942
ft | 2,260.4717
psf | 4,163.1091
psf | 0 psf | 424.39569
psf | 0 psf | 4 CH 0
TO -30 | | Slice
28 | 59.894415
ft | -26.86247
ft | 2,082.6692
psf | 3,955.528
psf | 0 psf | 408.94923
psf | 0 psf | 4 CH 0
TO -30 | | Slice
29 | 64.795435
ft | -24.484092
ft | 1,889.0922
psf | 3,590.909
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
30 | 68.986305
ft | -22.450337
ft | 1,747.7882
psf | 3,334.3487
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
31 | 72.868972
ft | -20.256422
ft | 1,597.5397
psf | 3,138.0274
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
32 | 76.443438
ft | -17.902348
ft | 1,438.3467
psf | 2,846.63
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
33 | 81.415335
ft | -14.286572
ft | 1,195.6052
psf | 2,446.1092
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
34 | 85.863885
ft | -10.879982
ft | 972.47799
psf | 2,035.8823
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
35 | 89.916817
ft | -7.622465
ft | 770.52502
psf | 1,685.8419
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
36 | 95.494912
ft | -3.043135
ft | 486.58328
psf | 1,163.525
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
37 | 98.695071
ft | -0.376735
ft | 321.23624
psf | 890.56972
psf | 0 psf | 400 psf | 0 psf | 4 CH 0
TO -30 | | Slice
38 | 99.903091
ft | 0.73027331
ft | 252.54709
psf | 827.56567
psf | 0 psf | 500 psf | 0 psf | 3 CH TO
0 | | Slice
39 | 102.45747
ft | 3.0710641
ft | 103.61705
psf | 539.57928
psf | 0 psf | 500 psf | 0 psf | 3 CH TO
0 | HWL EE FS TO PS Page 1 of 9 # **HWL EE FS TO PS** Report generated using GeoStudio 2019. Copyright © 1991-2018 GEOSLOPE International Ltd. ## **File Information** File Version: 10.00 Created By: Quach, Bich N CIV USARMY CEMVN (USA) Last Edited By: Quach, Bich N CIV USARMY CEMVN (USA) Revision Number: 35 Date: 08/11/2020 Time: 07:07:21 PM Tool Version: 10.0.0.17401 File Name: WBV-MRL-10 FS shift.gsz Directory: G:\F&MHOME\QuachB\LPV-WBV GRR levee lifts\FLD LPV-WBV-MRL\WBV-MRL\WBV-MRL-10\ Last Solved Date: 08/11/2020 Last Solved Time: 07:08:42 PM # **Project Settings** Unit System: U.S. Customary Units ## **Analysis Settings** #### **HWL EE FS TO PS** Kind: SLOPE/W Method: Spencer Settings PWP Conditions from: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: Yes **Optimizations Settings** Maximum Iterations: 2,000 Convergence Tolerance: 1e-07 Starting Points: 8 Ending Points: 16 Complete Passes per Insertion: 1 Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 ° Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Advanced HWL EE FS TO PS Page 2 of 9 Geometry Settings Minimum Slip Surface Depth: 0.1 ft Number of Slices: 30 Factor of Safety Convergence Settings Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2 ## **Materials** #### 1 New levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0 ° Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 ### 2 Levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 ## 3 CH TO 0 Model: Spatial Mohr-Coulomb Unit Weight: 110 pcf Cohesion Fn: CH TO 0 Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 ### 4 CH 0 TO -20 Model: Spatial Mohr-Coulomb Unit Weight: 95 pcf Cohesion Fn: CH 0 TO -20 Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 ## 5 CH -20 TO -65 HWL EE FS TO PS Page 3 of 9 Model: Spatial Mohr-Coulomb Weight Fn: CH -20 TO -65 Cohesion Fn: CH -20 TO -65 Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 ### 6 ML -65 TO -90 Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 200 psf Phi': 15 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 #### 7 CH -90 TO -110 Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 1,600 psf Phi': 0° Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 # **Slip Surface Entry and Exit** Left Type: Range Left-Zone Left Coordinate: (-38.49266, 16.58825) ft Left-Zone Right Coordinate: (5.3, 19.41) ft Left-Zone Increment: 9 Right Type: Range Right-Zone Left Coordinate: (45.09, 9.12) ft Right-Zone Right Coordinate: (141.00004, 1.95) ft Right-Zone Increment: 19 Radius Increments: 4 # **Slip Surface Limits** Left Coordinate: (-200, 7.43) ft Right Coordinate: (200, 1.95) ft ## **Piezometric Lines** #### Piezometric Line 1 ### **Coordinates** | Х | Υ | |---|---| | | | HWL EE FS TO PS Page 4 of 9 | Coordinate 1 | -200 ft | 23 ft | |--------------|-----------|---------| | Coordinate 2 | -19.06 ft | 23 ft | | Coordinate 3 | 74.4 ft | 2.31 ft | | Coordinate 4 | 95.9 ft | 1.7 ft | | Coordinate 5 | 111.3 ft | 1.9 ft | | Coordinate 6 | 200 ft | 1.9 ft | ## **Cohesion Functions** #### CH TO 0 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 700 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 600) Data Point: (-200, 600) Data Point: (0, 700) Data Point: (74.4, 600) Data Point: (200, 600) ### CH 0 TO -20 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 700 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 350) Data Point: (-41, 350) Data Point: (0, 700) Data Point: (74.4, 350) Data Point: (200, 350) #### CH -20 TO -65 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 600 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 500) Data Point: (-41, 500) Data Point: (0, 600) Data Point: (74.4, 500) Data Point: (200, 500) # **Unit Weight Functions** HWL EE FS TO PS Page 5 of 9 ### CH -20 TO -65 Model: Spline Data Point Function Function: Unit Weight vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 105 pcf Data Points: X (ft), Unit Weight (pcf) Data Point: (-200, 100) Data Point: (-41, 100) Data Point: (0, 105) Data Point: (74.4, 100) Data Point: (200, 100) ## **Points** | | Х | Υ | | |----------|-----------|----------|--| | Point 1 | -200 ft | 7.43 ft | | | Point 2 | -107.4 ft | 7.43 ft | | | Point 3 | -91.8 ft | 7.43 ft | | | Point 4 | -75.7 ft | 7.83 ft | | | Point 5 | -63.8 ft | 8.07 ft | | | Point 6 | -48.4 ft | 8.56 ft | | | Point 7 | -41 ft | 9.12 ft | | | Point 8 | -36 ft | 10.61 ft | | | Point 9 | -22.8 ft | 14.43 ft | | | Point 10 | -12.6 ft | 17.25 ft | | | Point 11 | -11.9 ft | 17.43 ft | | | Point 12 | -5.1 ft | 19.59 ft | | | Point 13 | -3.5 ft | 19.61 ft | | | Point 14 | 0.9 ft | 19.58 ft | | | Point 15 | 5.3 ft | 19.41 ft | | | Point 16 | 6.3 ft | 19.21 ft | | | Point 17 | 9.1 ft | 18.34 ft | | | Point 18 | 23.5 ft | 14.84 ft | | | Point 19 | 41.7 ft | 10.03 ft | | | Point 20 | 57.4 ft | 5.81 ft | | | Point 21 | 74.4 ft | 2.31 ft | | | Point 22 | 95.9 ft | 1.75 ft | | | Point 23 | 111.3 ft | 1.95 ft | | | Point 24 | 200 ft | 1.95 ft | | | Point 25 | -200 ft | 0 ft | | | Point 26 | 200 ft | 0 ft | | | Point 27 | -200 ft | -20 ft | | | Point 28 | 200 ft | -20 ft | | | Point 29 | -200 ft | -65 ft | | | Point 30 | 200 ft | -65 ft | | HWL EE FS TO PS Page 6 of 9 | Point 31 | -200 ft | -90 ft | |----------|-----------|---------| | Point 32 | 200 ft | -90 ft | | Point 33 | -200 ft | -110 ft | | Point 34 | 200 ft | -110 ft | | Point 35 | -19.06 ft | 23 ft | | Point 36 | -9.06 ft | 23 ft | | Point 37 | 45.09 ft | 9.12 ft | | Point 38
 -64.34 ft | 8.06 ft | # **Regions** | | Material | Points | Area | |----------|------------------|---------------------------------------|------------------------| | Region 1 | 4 CH 0 TO -20 | 25,26,28,27 | 8,000 ft ² | | Region 2 | 5 CH -20 TO -65 | 27,28,30,29 | 18,000 ft ² | | Region 3 | 6 ML -65 TO -90 | 29,30,32,31 | 10,000 ft ² | | Region 4 | 7 CH -90 TO -110 | 31,32,34,33 | 8,000 ft ² | | Region 5 | 2 Levee | 7,37,19,18,17,16,15,14,13,12,11,10,8 | 501.06 ft ² | | Region 6 | 3 CH TO 0 | 1,25,26,24,23,22,21,20,37,7,6,5,4,3,2 | 2,406 ft ² | | Region 7 | 1 New levee | 38,35,36,15,14,13,12,11,10,8,7,6,5 | 323.23 ft ² | # **Slip Results** Slip Surfaces Analysed: 735 of 1001 converged # **Current Slip Surface** Slip Surface: 1,001 Factor of Safety: 1.28 Volume: 6,070.0028 ft³ Weight: 618,492.33 lbf Resisting Moment: 8,913,292.6 lbf·ft Activating Moment: 6,939,354.6 lbf·ft Resisting Force: 83,134.502 lbf Activating Force: 64,711.046 lbf Slip Rank: 1 of 1,001 slip surfaces Exit: (121.13488, 1.95) ft Entry: (-38.492661, 16.588252) ft Radius: 76.146824 ft Center: (44.18642, 43.110342) ft ## **Slip Slices** | | х | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base
Material | |------------|----------------------|-----------------|------------------|--------------------------|------------------------|----------------------|---------------------|------------------| | Slice
1 | -
36.629833
ft | 13.774064
ft | 575.97695
psf | 64.714516
psf | -0 psf | 600 psf | 0 psf | 1 New
levee | | Slice | - | 10.039938 | 809.09914 | 500.76372 | | | | | HWL EE FS TO PS Page 7 of 9 | 2 | 34.158061
ft | ft | psf | psf | -0 psf | 600 psf | 0 psf | 2 Levee | |-------------|----------------------|----------------------|-------------------|-------------------|--------|------------------|-------|--------------------| | Slice
3 | -
32.252138
ft | 7.160645
ft | 988.85392
psf | 805.70787
psf | -0 psf | 621.33625
psf | 0 psf | 3 CH TO
0 | | Slice
4 | -
29.035997
ft | 2.600645
ft | 1,273.5356
psf | 1,393.7463
psf | 0 psf | 629.1805
psf | 0 psf | 3 CH TO
0 | | Slice
5 | -
25.213787
ft | -2.578805
ft | 1,596.8896
psf | 2,085.6278
psf | 0 psf | 484.76036
psf | 0 psf | 4 CH 0
TO -20 | | Slice
6 | -21.18537
ft | -
7.8705019
ft | 1,927.2513
psf | 2,627.0236
psf | 0 psf | 519.14928
psf | 0 psf | 4 CH 0
TO -20 | | Slice
7 | -17.00911
ft | -
13.201217
ft | 2,231.7041
psf | 3,102.9599
psf | 0 psf | 554.80028
psf | 0 psf | 4 CH 0
TO -20 | | Slice
8 | -13.77911
ft | -
17.088344
ft | 2,429.7374
psf | 3,544.8616
psf | 0 psf | 582.37345
psf | 0 psf | 4 CH 0
TO -20 | | Slice
9 | -12.25 ft | -
18.734422
ft | 2,511.369
psf | 3,682.5066
psf | 0 psf | 595.42683
psf | 0 psf | 4 CH 0
TO -20 | | Slice
10 | -
11.487176
ft | -
19.555597
ft | 2,552.0924
psf | 3,751.1733
psf | 0 psf | 601.93874
psf | 0 psf | 4 CH 0
TO -20 | | Slice
11 | -
10.067176
ft | -
21.084218
ft | 2,627.8991
psf | 3,916.8687
psf | 0 psf | 575.44591
psf | 0 psf | 5 CH -20
TO -65 | | Slice
12 | -8.5349 ft | -
22.733703
ft | 2,709.6997
psf | 4,061.6833
psf | 0 psf | 579.18317
psf | 0 psf | 5 CH -20
TO -65 | | Slice
13 | -6.5549 ft | -
24.620531
ft | 2,800.1298
psf | 4,300.9255
psf | 0 psf | 584.01244
psf | 0 psf | 5 CH -20
TO -65 | | Slice
14 | -
4.4168209
ft | -
26.562659
ft | 2,891.8275
psf | 4,433.2901
psf | 0 psf | 589.22727
psf | 0 psf | 5 CH -20
TO -65 | | Slice
15 | -
3.6168209
ft | -
27.289341
ft | 2,926.1378
psf | 4,483.0644
psf | 0 psf | 591.17849
psf | 0 psf | 5 CH -20
TO -65 | | Slice
16 | -1.3 ft | -29.39383
ft | 3,025.5014
psf | 4,627.9728
psf | 0 psf | 596.82927
psf | 0 psf | 5 CH -20
TO -65 | | Slice
17 | 1.581705
ft | -
32.011432
ft | 3,149.0917
psf | 4,810.1474
psf | 0 psf | 597.87405
psf | 0 psf | 5 CH -20
TO -65 | | Slice
18 | 3.781705
ft | -
33.609693
ft | 3,218.466
psf | 5,097.6475
psf | 0 psf | 594.91706
psf | 0 psf | 5 CH -20
TO -65 | | Slice | 5.8 ft | -
34.911139 | 3,271.8212 | 5,175.2133 | 0 psf | 592.2043 | 0 psf | 5 CH -20 | HWL EE FS TO PS Page 8 of 9 | 19 | | ft | psf | psf | | psf | | TO -65 | |-------------|-----------------|----------------------|-------------------|-------------------|-------|------------------|-------|--------------------| | Slice
20 | 7.7 ft | -
36.136304
ft | 3,322.0493
psf | 5,238.6526
psf | 0 psf | 589.65054
psf | 0 psf | 5 CH -20
TO -65 | | Slice
21 | 10.8551 ft | -
38.170789
ft | 3,405.4569
psf | 5,346.3079
psf | 0 psf | 585.40981
psf | 0 psf | 5 CH -20
TO -65 | | Slice
22 | 15.33265
ft | -
40.445865
ft | 3,485.6075
psf | 5,617.8413
psf | 0 psf | 579.3916
psf | 0 psf | 5 CH -20
TO -65 | | Slice
23 | 20.77755
ft | -
42.732554
ft | 3,553.1138
psf | 5,695.3106
psf | 0 psf | 572.07319
psf | 0 psf | 5 CH -20
TO -65 | | Slice
24 | 23.635845
ft | -
43.932949
ft | 3,588.5511
psf | 5,734.9998
psf | 0 psf | 568.23139
psf | 0 psf | 5 CH -20
TO -65 | | Slice
25 | 27.082798
ft | -
44.631768
ft | 3,584.5392
psf | 5,869.0956
psf | 0 psf | 563.59839
psf | 0 psf | 5 CH -20
TO -65 | | Slice
26 | 33.705013
ft | -
45.915303
ft | 3,573.1471
psf | 5,790.541
psf | 0 psf | 554.69756
psf | 0 psf | 5 CH -20
TO -65 | | Slice
27 | 39.35806
ft | -
46.459843
ft | 3,529.0139
psf | 5,842.7354
psf | 0 psf | 547.09938
psf | 0 psf | 5 CH -20
TO -65 | | Slice
28 | 42.669077
ft | -
46.322384
ft | 3,474.6718
psf | 5,721.0903
psf | 0 psf | 542.64909
psf | 0 psf | 5 CH -20
TO -65 | | Slice
29 | 44.364077
ft | -
46.252015
ft | 3,446.8526
psf | 5,658.267
psf | 0 psf | 540.37086
psf | 0 psf | 5 CH -20
TO -65 | | Slice
30 | 47.823875
ft | -
46.108379
ft | 3,390.0686
psf | 5,533.6253
psf | 0 psf | 535.7206
psf | 0 psf | 5 CH -20
TO -65 | | Slice
31 | 51.206469
ft | -45.79684
ft | 3,323.8694
psf | 5,588.0786
psf | 0 psf | 531.1741
psf | 0 psf | 5 CH -20
TO -65 | | Slice
32 | 54.627594
ft | -
44.752445
ft | 3,211.3854
psf | 5,378.5731
psf | 0 psf | 526.57581
psf | 0 psf | 5 CH -20
TO -65 | | Slice
33 | 60.238605
ft | -
43.039525
ft | 3,026.8995
psf | 5,047.7144
psf | 0 psf | 519.03413
psf | 0 psf | 5 CH -20
TO -65 | | Slice
34 | 65.907908
ft | -
40.542204
ft | 2,792.6377
psf | 4,829.6077
psf | 0 psf | 511.4141
psf | 0 psf | 5 CH -20
TO -65 | | Slice
35 | 71.569303
ft | -
37.280693
ft | 2,510.7766
psf | 4,341.6454
psf | 0 psf | 503.8047
psf | 0 psf | 5 CH -20
TO -65 | | Slice
36 | 75.22124
ft | -
35.176824
ft | 2,338.8548
psf | 4,047.2919
psf | 0 psf | 500 psf | 0 psf | 5 CH -20
TO -65 | HWL EE FS TO PS Page 9 of 9 | Slice
37 | 79.064525
ft | -
32.596038
ft | 2,170.9283
psf | 3,845.2017
psf | 0 psf | 500 psf | 0 psf | 5 CH -20
TO -65 | |-------------|-----------------|----------------------|-----------------------|-------------------|-------|---------|-------|--------------------| | Slice
38 | 85.108615
ft | -
28.380692
ft | 1,897.0578
psf | 3,388.3587
psf | 0 psf | 500 psf | 0 psf | 5 CH -20
TO -65 | | Slice
39 | 92.01533
ft | -
23.189971
ft | 1,560.7664
psf | 2,882.6949
psf | 0 psf | 500 psf | 0 psf | 5 CH -20
TO -65 | | Slice
40 | 97.578465
ft | -
18.774816
ft | 1,279.6075
psf | 2,313.8147
psf | 0 psf | 350 psf | 0 psf | 4 CH 0
TO -20 | | Slice
41 | 102.904 ft | -14.47593
ft | 1,015.5451
psf | 1,902.1087
psf | 0 psf | 350 psf | 0 psf | 4 CH 0
TO -20 | | Slice
42 | 108.92553
ft | -
9.3177959
ft | 698.40394
psf | 1,438.0693
psf | 0 psf | 350 psf | 0 psf | 4 CH 0
TO -20 | | Slice
43 | 115.16097
ft | -
3.5632209
ft | 341.06991
psf | 864.90777
psf | 0 psf | 350 psf | 0 psf | 4 CH 0
TO -20 | | Slice
44 | 120.05131
ft | 0.95 ft | 59.308679
psf | 598.61687
psf | 0 psf | 600 psf | 0 psf | 3 CH TO
0 | | Slice
45 | 121.10779
ft | 1.925 ft | -
1.5607547
psf | 485.47051
psf | 0 psf | 600 psf | 0 psf | 3 CH TO
0 | HWL EE Page 1 of 10 # **HWL EE** Report generated using GeoStudio 2019. Copyright © 1991-2018 GEOSLOPE International Ltd. ## **File Information** File Version: 10.00 Created By: Quach, Bich N CIV USARMY CEMVN (USA) Last Edited By: Quach, Bich N CIV USARMY CEMVN (USA) Revision Number: 14 Date: 08/10/2020 Time: 03:36:51 PM Tool Version: 10.0.0.17401 File Name: WBV-MRL-11 - FS shift.gsz Directory: G:\F&MHOME\QuachB\LPV-WBV GRR levee lifts\FLD LPV-WBV-MRL\WBV-MRL\WBV-MRL-11\ Last Solved Date: 10/30/2020 Last Solved Time: 12:19:10 PM ## **Project Settings** Unit System: U.S. Customary Units ## **Analysis Settings** #### **HWL EE** Kind: SLOPE/W Method: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions from: Piezometric Line Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: Yes **Optimizations Settings** Maximum Iterations: 2,000 Convergence Tolerance: 1e-07 Starting Points: 8 Ending Points: 16 Complete Passes per Insertion: 1 Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 ° Tension Crack Option: Tension Crack Line Filled with water (0 to 1): 0 HWL EE Page 2 of 10 Tension
Crack Fluid Unit Weight: 62.430189 pcf Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 0.1 ft Number of Slices: 30 **Factor of Safety Convergence Settings** Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 **Solution Settings** Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2 **Materials** 2 Levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0 ° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 1 New levee Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 600 psf Phi': 0° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 4 ML -10 TO -50 Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 200 psf Phi': 15° Phi-B: 0° Pore Water Pressure Piezometric Line: 1 3 CH TO -10 Model: Spatial Mohr-Coulomb Weight Fn: CH TO -10 Cohesion Fn: CH TO -10 Phi': 0 ° Phi-B: 0° Pore Water Pressure #### Piezometric Line: 1 #### 5 CH -50 TO -70 Model: Spatial Mohr-Coulomb Weight Fn: CH -50 TO -70 Cohesion Fn: CH -50 TO -70 Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 ### 6 CH -70 TO -90 Model: Spatial Mohr-Coulomb Unit Weight: 115 pcf Cohesion Fn: CH -70 TO -90 Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 ### 7 CH -90 TO -110 Model: Spatial Mohr-Coulomb Weight Fn: CH -90 TO -110 Cohesion Fn: CH -90 TO -110 Phi': 0 $^{\circ}$ Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 #### 8 CH -110 TO -150 Model: Spatial Mohr-Coulomb Weight Fn: CH -110 TO -150 Cohesion Fn: CH -110 TO -150 Phi': 0 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 # **Slip Surface Entry and Exit** Left Type: Range Left-Zone Left Coordinate: (-27.11322, 17.39751) ft Left-Zone Right Coordinate: (2, 21.6) ft Left-Zone Increment: 8 Right Type: Range Right-Zone Left Coordinate: (41.05066, 11.38311) ft Right-Zone Right Coordinate: (145, 6.8) ft Right-Zone Increment: 22 Radius Increments: 6 # **Slip Surface Limits** HWL EE Page 4 of 10 Left Coordinate: (-200, 9.3) ft Right Coordinate: (200, 6.8) ft ## **Piezometric Lines** #### Piezometric Line 1 #### **Coordinates** | | Х | Υ | |--------------|----------|---------| | Coordinate 1 | -200 ft | 22.5 ft | | Coordinate 2 | -11.6 ft | 22.5 ft | | Coordinate 3 | 62.1 ft | 7.1 ft | | Coordinate 4 | 63.6 ft | 7 ft | | Coordinate 5 | 72.1 ft | 7 ft | | Coordinate 6 | 81.3 ft | 6.9 ft | | Coordinate 7 | 93.7 ft | 6.8 ft | | Coordinate 8 | 200 ft | 6.8 ft | ## **Tension Crack Line** | | X | Υ | |--------------|----------|---------| | Coordinate 1 | -30 ft | 11.4 ft | | Coordinate 2 | -11.6 ft | 17.5 ft | | Coordinate 3 | -1.6 ft | 17.5 ft | ## **Cohesion Functions** #### CH -110 TO -150 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 1,900 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 1,400) Data Point: (-43, 1,400) Data Point: (0, 1,900) Data Point: (62, 1,400) Data Point: (200, 1,400) #### CH -90 TO -110 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 1,500 psf Data Points: X (ft), Cohesion (psf) HWL EE Page 5 of 10 Data Point: (-200, 1,100) Data Point: (-43, 1,100) Data Point: (0, 1,500) Data Point: (62, 1,100) Data Point: (200, 1,100) CH -70 TO -90 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 1,100 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 900) Data Point: (-43, 900) Data Point: (0, 1,100) Data Point: (62, 900) Data Point: (200, 900) CH -50 TO -70 Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 700 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 600) Data Point: (-43, 600) Data Point: (0, 700) Data Point: (62, 600) Data Point: (200, 600) **CH TO -10** Model: Spline Data Point Function Function: Cohesion vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 600 psf Data Points: X (ft), Cohesion (psf) Data Point: (-200, 300) Data Point: (-43, 300) ## **Unit Weight Functions** Data Point: (0, 600) Data Point: (62, 300) Data Point: (200, 300) ### **CH TO -10** Model: Spline Data Point Function Function: Unit Weight vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % **HWL EE** Page 6 of 10 Y-Intercept: 115 pcf Data Points: X (ft), Unit Weight (pcf) Data Point: (-200, 100) Data Point: (-43, 100) Data Point: (0, 115) Data Point: (62, 100) Data Point: (200, 100) #### CH -50 TO -70 Model: Spline Data Point Function Function: Unit Weight vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 110 pcf Data Points: X (ft), Unit Weight (pcf) Data Point: (-200, 100) Data Point: (-43, 100) Data Point: (0, 110) Data Point: (62, 100) Data Point: (200, 100) #### CH -90 TO -110 Model: Spline Data Point Function Function: Unit Weight vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 115 pcf Data Points: X (ft), Unit Weight (pcf) Data Point: (-200, 110) Data Point: (-43, 110) Data Point: (0, 115) Data Point: (62, 110) Data Point: (200, 110) ### CH -110 TO -150 Model: Spline Data Point Function Function: Unit Weight vs. X Curve Fit to Data: 100 % Segment Curvature: 0 % Y-Intercept: 115 pcf Data Points: X (ft), Unit Weight (pcf) Data Point: (-200, 110) Data Point: (-43, 110) Data Point: (0, 115) Data Point: (62, 110) Data Point: (200, 110) ### **Points** | | X | Υ | |---------|-----------|--------| | Point 1 | -200 ft | 9.3 ft | | Point 2 | -122.3 ft | 9.3 ft | | | | | HWL EE Page 7 of 10 | Point 3 | -108.7 ft | 10.4 ft | |----------|-----------|---------| | Point 4 | -87.8 ft | 10 ft | | Point 5 | -73.7 ft | 9.3 ft | | Point 6 | -58.5 ft | 9.7 ft | | Point 7 | -45.5 ft | 10.2 ft | | Point 8 | -43.8 ft | 10.1 ft | | Point 9 | -37.8 ft | 12.1 ft | | Point 10 | -28.8 ft | 14.9 ft | | Point 11 | -19.2 ft | 17.9 ft | | Point 12 | -11.7 ft | 20.2 ft | | Point 13 | -8.2 ft | 21.4 ft | | Point 14 | -3.9 ft | 21.7 ft | | Point 15 | 2 ft | 21.6 ft | | Point 16 | 9.5 ft | 19.5 ft | | Point 17 | 20.3 ft | 17.4 ft | | Point 18 | 35.3 ft | 13.3 ft | | Point 19 | 45.8 ft | 9.8 ft | | Point 20 | 56.5 ft | 7.7 ft | | Point 21 | 62.1 ft | 7.1 ft | | Point 22 | 72.1 ft | 7 ft | | Point 23 | 81.3 ft | 6.9 ft | | Point 24 | 93.7 ft | 6.8 ft | | Point 25 | 200 ft | 6.8 ft | | Point 26 | -200 ft | -10 ft | | Point 27 | 200 ft | -10 ft | | Point 28 | -200 ft | -30 ft | | Point 29 | 200 ft | -30 ft | | Point 30 | -200 ft | -50 ft | | Point 31 | 200 ft | -50 ft | | Point 32 | -200 ft | -70 ft | | Point 33 | 200 ft | -70 ft | | Point 34 | -200 ft | -90 ft | | Point 35 | 200 ft | -90 ft | | Point 36 | -200 ft | -110 ft | | Point 37 | 200 ft | -110 ft | | Point 38 | -200 ft | -150 ft | | Point 39 | 200 ft | -150 ft | | Point 40 | -11.6 ft | 22.5 ft | | Point 41 | -1.6 ft | 22.5 ft | | Point 42 | -49.3 ft | 10.1 ft | # Regions | | Material | Points | Area | |----------|-----------------|---|-------------------------| | Region 1 | 3 CH TO -10 | 1,26,27,25,24,23,22,21,20,8,7,6,5,4,3,2 | 7,373.2 ft ² | | Region 2 | 5 CH -50 TO -70 | 30,31,33,32 | 8,000 ft ² | | | | | | **HWL EE** Page 8 of 10 | Region 3 | 6 CH -70 TO -90 | 32,33,35,34 | 8,000 ft ² | |----------|-------------------|-----------------------------------|------------------------| | Region 4 | 7 CH -90 TO -110 | 34,35,37,36 | 8,000 ft ² | | Region 5 | 8 CH -110 TO -150 | 36,37,39,38 | 16,000 ft ² | | Region 6 | 4 ML -10 TO -50 | 26,27,29,31,30,28 | 16,000 ft ² | | Region 7 | 2 Levee | 8,20,19,18,17,16,15,13,12,11,10,9 | 686.38 ft ² | | Region 8 | 1 New levee | 15,41,40,42,7,8,9,10,11,12,13,14 | 81.45 ft ² | ## **Slip Results** Slip Surfaces Analysed: 921 of 1450 converged # **Current Slip Surface** Slip Surface: 1,450 Factor of Safety: 1.580 Volume: 1,721.3096 ft³ Weight: 188,409.12 lbf Resisting Moment: 3,399,637 lbf·ft Activating Moment: 2,151,161.1 lbf·ft Resisting Force: 41,955.343 lbf Activating Force: 26,550.942 lbf Slip Rank: 1 of 1,450 slip surfaces Exit: (76.745701, 6.9495033) ft Entry: (-16.623694, 15.834536) ft Radius: 40.934916 ft Center: (37.513116, 60.374126) ft ## **Slip Slices** | | х | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base
Material | |------------|----------------------|-----------------|------------------|--------------------------|------------------------|----------------------|---------------------|------------------| | Slice
1 | -
16.579217
ft | 15.791663
ft | 418.80273
psf | 319.45665
psf | -0 psf | 600 psf | 0 psf | 2 Levee | | Slice
2 | -
15.326055
ft | 14.520283
ft | 498.17522
psf | 466.31285
psf | -0 psf | 600 psf | 0 psf | 2 Levee | | Slice
3 | -
12.902485
ft | 12.056968
ft | 651.96044
psf | 783.78846
psf | 0 psf | 600 psf | 0 psf | 2 Levee | | Slice
4 | -11.6438
ft | 10.779305
ft | 731.72521
psf | 960.48656
psf | 0 psf | 600 psf | 0 psf | 2 Levee | | Slice
5 | -
10.862999
ft | 10.015345
ft | 769.80508
psf | 1,043.9913
psf | 0 psf | 600 psf | 0 psf | 2 Levee | | Slice
6 | -
9.1629987
ft | 8.3520144
ft | 851.47045
psf | 1,256.4766
psf | 0 psf | 536.0721
psf | 0 psf | 3 CH TO
-10 | | Slice
7 | -
7.5011831
ft | 6.7260442
ft | 931.3015
psf | 1,413.0883
psf | 0 psf | 547.66616
psf | 0 psf | 3 CH TO
-10 | HWL EE Page 9 of 10 | Slice
8 | -
6.6490064
ft | 5.8922489
ft | 972.23876
psf | 1,490.5324
psf | 0 psf | 553.61158
psf | 0 psf | 3 CH TO
-10 | |-------------|----------------------|------------------|-------------------|-------------------|-------|------------------|-------|----------------| | Slice
9 | -
6.2147133
ft | 5.4673236
ft | 993.10152
psf | 1,529.9465
psf | 0 psf |
556.64154
psf | 0 psf | 3 CH TO
-10 | | Slice
10 | -4.91689
ft | 4.387822 ft | 1,043.5648
psf | 1,705.071
psf | 0 psf | 565.69612
psf | 0 psf | 3 CH TO
-10 | | Slice
11 | -2.75 ft | 2.673241 ft | 1,122.339
psf | 1,875.4814
psf | 0 psf | 580.81395
psf | 0 psf | 3 CH TO
-10 | | Slice
12 | 0.2 ft | 0.3390135
ft | 1,229.5822
psf | 2,072.7968
psf | 0 psf | 599.03226
psf | 0 psf | 3 CH TO
-10 | | Slice
13 | 2.96337 ft | -1.8475404
ft | 1,330.0407
psf | 2,221.2791
psf | 0 psf | 585.66111
psf | 0 psf | 3 CH TO
-10 | | Slice
14 | 5.2602075
ft | -3.3263625
ft | 1,392.4014
psf | 2,427.4217
psf | 0 psf | 574.54738
psf | 0 psf | 3 CH TO
-10 | | Slice
15 | 7.9271425
ft | -4.7594475
ft | 1,447.0786
psf | 2,488.4148
psf | 0 psf | 561.64286
psf | 0 psf | 3 CH TO
-10 | | Slice
16 | 9.380305
ft | -5.518878
ft | 1,475.5334
psf | 2,617.2961
psf | 0 psf | 554.61143
psf | 0 psf | 3 CH TO
-10 | | Slice
17 | 10.834715
ft | -6.0400083
ft | 1,489.0947
psf | 2,637.2681
psf | 0 psf | 547.57396
psf | 0 psf | 3 CH TO
-10 | | Slice
18 | 13.504145
ft | -6.996493
ft | 1,513.9852
psf | 2,676.0729
psf | 0 psf | 534.65736
psf | 0 psf | 3 CH TO
-10 | | Slice
19 | 16.173575
ft | -7.9529777
ft | 1,538.8757
psf | 2,715.1816
psf | 0 psf | 521.74077
psf | 0 psf | 3 CH TO
-10 | | Slice
20 | 18.904145
ft | -8.7396836
ft | 1,552.3693
psf | 2,816.7457
psf | 0 psf | 508.52833
psf | 0 psf | 3 CH TO
-10 | | Slice
21 | 21.08051
ft | -9.2206286
ft | 1,554.0038
psf | 2,811.7171
psf | 0 psf | 497.99753
psf | 0 psf | 3 CH TO
-10 | | Slice
22 | 23.525315
ft | -9.621205
ft | 1,547.1191
psf | 2,828.0091
psf | 0 psf | 486.16783
psf | 0 psf | 3 CH TO
-10 | | Slice
23 | 26.36596
ft | -9.923595
ft | 1,528.9409
psf | 2,815.1166
psf | 0 psf | 472.42277
psf | 0 psf | 3 CH TO
-10 | | Slice
24 | 28.68907
ft | -9.99891 ft | 1,503.3376
psf | 2,786.2542
psf | 0 psf | 461.18192
psf | 0 psf | 3 CH TO
-10 | | Slice
25 | 31.201873
ft | -9.9999355
ft | 1,470.6218
psf | 2,705.4847
psf | 0 psf | 449.0232
psf | 0 psf | 3 CH TO
-10 | | Slice
26 | 33.933957
ft | -9.9999466
ft | 1,434.9821
psf | 2,616.2802
psf | 0 psf | 435.80343
psf | 0 psf | 3 CH TO
-10 | | Slice
27 | 36.506 ft | -9.999957
ft | 1,401.4302
psf | 2,523.2959
psf | 0 psf | 423.35806
psf | 0 psf | 3 CH TO
-10 | | Slice
28 | 38.918 ft | -9.9999668
ft | 1,369.966
psf | 2,426.6288
psf | 0 psf | 411.6871
psf | 0 psf | 3 CH TO
-10 | | Slice
29 | 41.543 ft | -9.9999774
ft | 1,335.7232
psf | 2,332.1101
psf | 0 psf | 398.98548
psf | 0 psf | 3 CH TO
-10 | | Slice
30 | 44.381 ft | -9.9999889
ft | 1,298.7019
psf | 2,239.5172
psf | 0 psf | 385.25323
psf | 0 psf | 3 CH TO
-10 | | Slice
31 | 46.455175
ft | -9.9999973
ft | 1,271.6446
psf | 2,175.2676
psf | 0 psf | 375.2169
psf | 0 psf | 3 CH TO
-10 | HWL EE Page 10 of 10 | Slice
32 | 48.778317
ft | -9.811765
ft | 1,229.5875
psf | 2,141.5849
psf | 0 psf | 363.97588
psf | 0 psf | 3 CH TO
-10 | |-------------|-----------------|------------------|-------------------|-------------------|-------|------------------|-------|----------------| | Slice
33 | 52.114253
ft | -9.435295
ft | 1,162.5668
psf | 2,008.5672
psf | 0 psf | 347.83426
psf | 0 psf | 3 CH TO
-10 | | Slice
34 | 55.14111
ft | -8.7607708
ft | 1,080.9704
psf | 1,938.4441
psf | 0 psf | 333.18818
psf | 0 psf | 3 CH TO
-10 | | Slice
35 | 57.624835
ft | -7.8719508
ft | 993.08075
psf | 1,771.6517
psf | 0 psf | 321.17015
psf | 0 psf | 3 CH TO
-10 | | Slice
36 | 60.424835
ft | -6.3463864
ft | 861.31316
psf | 1,630.1047
psf | 0 psf | 307.62177
psf | 0 psf | 3 CH TO
-10 | | Slice
37 | 62.85 ft | -4.7205514
ft | 734.83774
psf | 1,404.1566
psf | 0 psf | 300 psf | 0 psf | 3 CH TO
-10 | | Slice
38 | 65.683385
ft | -2.821045
ft | 613.12969
psf | 1,186.2489
psf | 0 psf | 300 psf | 0 psf | 3 CH TO
-10 | | Slice
39 | 69.933385
ft | 0.59626744
ft | 399.78623
psf | 861.68312
psf | 0 psf | 300 psf | 0 psf | 3 CH TO
-10 | | Slice
40 | 74.42285
ft | 4.7831891
ft | 136.81966
psf | 405.92793
psf | 0 psf | 300 psf | 0 psf | 3 CH TO
-10 |